Les nombres premiers… Mystère !

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs (qui sont alors 1 et lui-même). Ainsi, 1 n’est pas premier car il n’a qu’un seul diviseur entier positif ; 0 non plus car il est divisible par tous les entiers positifs.

Par opposition, un nombre non nul produit de deux nombres entiers différents de 1 est dit composé. Par exemple 6 = 2 × 3 est composé, tout comme 21 = 3 × 7 ou 7 × 3, mais 11 est premier car 1 et 11 sont les seuls diviseurs de 11.

Les nombres 0 et 1 ne sont ni premiers ni composés.

Les vingt-cinq nombres premiers inférieurs à 100 sont :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 et 97.

De telles listes de nombres premiers inférieurs à une borne donnée, ou compris entre deux bornes, peuvent être obtenues grâce à diverses méthodes de calcul. Mais il n’existe pas de liste exhaustive (finie) de nombres premiers car il existe une infinité de nombres premiers (on le sait depuis l’Antiquité : voir Théorème d’Euclide sur les nombres premiers).

La notion de nombre premier est une notion de base en arithmétique élémentaire : le théorème fondamental de l’arithmétique assure qu’un nombre composé est factorisable en un produit de nombres premiers, et que cette factorisation est unique à l’ordre des facteurs près. Elle admet des généralisations importantes dans des branches des mathématiques plus avancées, comme la théorie algébrique des nombres, qui prennent ainsi à leur tour l’appellation d’arithmétique. Par ailleurs, de nombreuses applications industrielles de l’arithmétique reposent sur la connaissance algorithmique des nombres premiers, et parfois plus précisément sur la difficulté des problèmes algorithmiques qui leur sont liés ; par exemple certains systèmes cryptographiques et des méthodes de transmission de l’information. Les nombres premiers sont aussi utilisés pour construire des tables de hachage et pour constituer des générateurs de nombres pseudo-aléatoires.

Découvert le , le plus grand nombre premier connu est le nombre premier de Mersenne « 257 885 161 – 1 », qui comporte 17 425 170 chiffres en écriture décimale. On le doit à l’équipe de Curtis Cooper (en), à l’université du Missouri Central (en), dans le cadre du projet Great Internet Mersenne Prime Search (GIMPS). Écrits les uns à la suite des autres, ses chiffres occuperaient plus de 4 000 pages en police Times New Roman taille 12.

Source : Wikipedia

Liens :

Nombres premiers jusqu’à 1000 Milliards